Gaussian Mixture Model (GMM)

= Mixture of Gaussian

$$ p(x) = \sum_z p(x, z)\\ = \sum_z p(x|z)p(z)\\=\sum_{k=1}^K \pi_k\cdot p(x|z) $$

Untitled

이것을 다시쓰면 아래와 같다.

$$ p(\mathbf x) = \sum_{k=1}^K \pi_k N(\mathbf x|\mathbf\mu_k, \mathbf \Sigma_k) $$

Formulation of Gaussian mixtures

$$ p(\mathbf x) = \sum_\mathbf z p(\mathbf x, \mathbf z) = \sum_z p(\mathbf z)p(\mathbf x|\mathbf z) = \sum_{k=1}^K \pi_k N(\mathbf x| \mathbf \mu_k, \mathbf \Sigma_k) $$

Responsibility : $\gamma(z_k)$ ⭐

$$ \gamma(z_k)\equiv p(z_k=1|\mathbf x) = \frac{p(z_k=1)p(x|z_k=1)}{\sum_{j=1}^Kp(z_j=1)p(x|z_j=1)}\\ =\frac{\pi_k N(\mathbf x|\mathbf\mu_k, \mathbf\Sigma_k)}{\sum_{j=1}^K\pi_jN(\mathbf x|\mathbf\mu_j, \mathbf \Sigma_j)} $$

(참고) Gaussian Distribution 표현